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This paper describes a procedure based on the steepest descent method for 
solving the problem of the optimum returning to the origin of a control sys- 
tem. 

4. We shall consider the control system described by the linear vector 

differential equation dx 
- = Ax + Bu 
dt (I.9 

where x represents an n-dimensional vector of the phase coordinates of 

the controlled object, and u Is a scalar function describing the control 

signal. 

The problem of the optimum control u"(t) which In a given time T brings 

the system (1.1) from the state x0 to the state X(T) with the requirement 

that the quantity T 

J(u) = max {ma,, ( u (z) I, 8 1 ) u (z) 1 dt} = min (0 = const) (1.2) 

is a minimum, can be considered as io$lows Cl]. 

Find the numbers li (i E I, a * 0) 72) and the system A of intervals 

CT Lf 7*+1 ] on [O,fl for which 

minlmaxA\ 1i lihi(T)l.df=r (1.3) 
A i=l 

is satisfied with the condition 

where 
i=l 

hi (z) = ~ fij,(-_) bj (‘=l, . . .t n) (c = - x0) 
j=l 

The y,,(t) are the elements of the fundamentsl matrix F(t) of the homo- 

geneous system (1.1); P(A) is the overall length of the system of intervals 

Crrr Tk+11' 
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Once (1.3) has been solved, the optimum control ~~(7) Is determined by 

Equations 

U"(Z) = $ signi Zi”hi(z) for z E A” d’(z) = 0 for r CA” (1.4) 
i=l 

where Zi" (i = 1, . w -9 T.8) aIld A0 are solutions of (1.3) 

We shall assume that the system (1.1) is fully controllable [21. The quan- 

tity 
P(z)=maxA\ Ii Zihi(T)IdT, p(A)-min[iy T] (1.5) 

h i=l 
is positive for all Zi (i = I, . . ., n), which satisfy the Condition 

i,s+zcs+...+ ln2>0 . In the domain {Z,] this quantity possesses the 

properties of a norm. Therefore, In order to find-a minimum of (1.3), we 

can search for z,O and A0 by using the steepest descent method with respect 

to 2, - 

2. In order to apply the steepest descent method to (1.3), it is neces- 

sary to compute the derivatives adall of P(Z) . We shall calculate them, 

taking into consideration that the fuctions h1(7) which enter Equation (1.3) 

are very smooth. Let C,,# 0 for definiteness. Then, p(t) can be formula- 

ted as 

p (1) = maxA \ 15. ligi CT) + 6n (r) 1 df (m=n-1) (24 
A i==I 

where g,(7), g.(7) are known expressions of h,(7). We shall consider the 

case for which u(A) = 1/e < T , since the derivatives at/al, have the form 

T 

ap,’ 
31, \ gi(r) sign(i zjaj(z) + 6n(Q)dz (i = 1, .., m) 

(2.2) 

0 ,=I 

when A = [O,T] and the descent of p(Z) with respect to I, does not present 

any singularities. In (2.1), maxA is obtained for the system of Intervals 

[71;, Trkl ] (k -= 1, . . . f S - I), loca- 

ted in the domain of the largest values 

of the function 

ll’(Z, 1) = (g (f, 1) I 

,Zj (Z, I) = 8, ligi (t) + gn (z) 
(2.3) 

On the ends of the Intervals 7 = 7r 

which do not coincide with 7 = 0 or 
\ 
\_/' ,r=T, the function (2.3) takes the 

Fig. 1 equal values 

w (t, 1) - a (0 

Let the numbers 1! be chosen In a certain manner, and a system of inter- 

vals A(l) be found for these values, such that It guarantees maxA In (2.1). 

To define the problem, let us assume that 7 = 0 Is not one of the points T* a 
but that 7 * T Is the point 7, . Then we have the case shown on Fig. 1 . 

First, let us assume that a change A&, of 2, changes the values 7L but 
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does not yield new roots 7t of Equation 

w (z, Z) = E (I) (2.4) 
In that case, the changes up and AC are described exactly, up to their 

higher order terms, by Equations 

Ap = Ali 5 gi (r, I) sign g (r, I) dz (2.5) 
A(l) 

‘* 
A4 IIf 

gi (rk) sign g irk, I) s’ 

I k,‘(f, mT=Tk I / =o (2.6) 
k=l 

(see Fig.2 on which un u = g,' (z, 1) and Ali” = AZGi (z) sign g(~, I)). 

The symbol S* In (2.6) means that the summation Is made along all 7k 

/ /$L; 

which do not coincide with the ends of the lnter- 

Equation (2.6)proceeds from the con- 

~~:,~~'",;A) = l/e = const . On the basis of 

(2.5) and (2.6) we get the following expressions 

for the partial derivatives: 

gi (r, 0 sign g (z, 4 dr (2.7) 

Let us now consider the case In which Equation (2.4) gets new roots 71r 

for arbitrarily small ~1,. That case can occur only when the largest values 

of the function m(~,2) are on the line m - c(Z) . First, let this occur 

for T1= 0, or T,= T , whereupon gr' (z, I) #O, -c = -cl or T = 'G+ 

In such a case, If the condition 

AE < A&i (~j) sign g (~j, 1) rj = 1 or j=s) (2.8) 

Is fulfilled, then additional terms of the form 

Aligi (rj) sign B (rjl 1) As -- 
I k,’ (79 III s=si I I k:’ (tz 4,=,j I 

(j= 1 OT ;=s) (2.9) 

appear In Equation (2.6). 

We shall note that If terms of the form (2.9) are considered In (2.6), It 

Is Indispensable to take Into consideration the difference between the right 

and left values of the derivatives 

on 

We 

be 

ael dli, dC_ I dli 

Let us now suppose that the largest value of the function w(T,Z) Is found 

the line w = e(z) fbr T- 7, where 7, Is a point Inside the Interval [O,Tl. 

shall assume furthermore that [g," (Tj, Z)l # 0, since the contrary would 

an exceptional and not likely case. Then, terms of the form 

8(Aligi (z~, I)sign g(zj, l)-As) '1% 

! g7” (tit 1) I 
(2.10) 
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appear in Equation (2.6) with the condition that the positivenessof the radi- 

cand follows from (2.6), (where 815” = A& (z) sign g (z, 1) (plg.3)). 
Here again the difference between the right and the left derivatives must be 

taken into consideration. Terms of the form 

4 (2.10) are also found in (2.6) when Zj = 0 

is replaced by a factor 2. The values of 

method to be used for the solution of prob- 
I 

lem (1.3), and also the problem of the opti- 
Fig. 3 mum control by the system (1.1). Thus, as 

long as the largest values of the function 

u)(T,~) are sufficiently distant from the line U) = E(Z), the steepest descent 

of the quantity p(z) determined by (2.1) must be obtained along the direc- 

tiolis 
A&= -v$, 

i 
A,=-,$&$ 

i=* ’ 
where the derivatives 

dp I ali, as I dli 

are computed according to Formulas (2.7). 

When values 2, , such that the largest values of the function aj(~,z) 

are in the neighborhood of the line U) - c(L), are considered, one must be 

aware that new roots might appear (and similarly old roots disappear). Then, 

In the descent procedure, It Is Indispensable to bring in the corrections 

determined by these circumstances, and take into consideration terms of the 

form (2.9) and (2.10). Thus the steepest descent Is determined by taking 

into account that the values ac+/az, and ac-/al, can be different. 

In the cases in which the largest value of ~(7.7,) is far from the line 

10 - c(z), but $'(T~) - 0 , one must alSG consider terms of the form (2.10); 

however such cases are exceptional and we shall not discuss them. We should 

point Gut that the exposed method for determining the system of intervals A 

at each step of the calculation, has in the case Of a numerical SGlUtiGn on 

a digital computer the disadvantage that It leads to a cumulation of errors. 

Therefore, when this method is used in a practical case, it Is necessary, 

after a certain amount of steps, to check the ConditionS of conservatioqof 

the given measUre of the System of intervals b . 

This drawback can be avoided by the following method of approximate cal- 

CUlatiGn for each fixed set of numbers 21 (t = l,..., n) of the system A 

of intervals [TV, T,.+~] of the specified measure for which a maximum of 

(2.1) Is obtained, and which are necessary for the calculation of adal, in 
agreement with (2.7) and alSG for the Calculation of the quantity p(t) of 

(2.1). &et us split the interval [O,a into r equal parts by the points 
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ok* = kAz (k = 0, . . ., T). We shall compute 
tion ~(7~1) Is determined by Equation (2.3). 

in decreasing order Wk, >Wkl > . . . > wri,. 

w(7**,2) = w* where the func- 

Let us arrange the numbers wr 

The number 8 is determined from the condition 

Then the system of intervals a is approximately 

Q, T$ + ATI (j= I, . . . , s) 
The value of the function (2.1) is determined 

p (1) z AT e wkj 
j=l 

by Equation 

In a similar manner the quantities ap/at, (t = l,..., n) are determined. 

The accuracy of the computation is improved as the number r increases. 

The method exposed for the computation of the intervals A can be easily 

set up on a digital computer. 

3. Let us consider some particular problems which may be solved by the 
method exposed In Section 1 of the present paper. 

Problem 3.1. Let uo(t,f~) be the optimum control for the problem 
of Section 1. Find a value 8 = e* of the parameter appearing in the func- 
tional (1.2) such that the optimum control uO(t,Cl*) satisfy the additional 
condition 

max5 1 u” (7, O*)I := fi 

In which H Is a given constant number. 

From the method Cl] used to determine max,,(u’(%e) / follows the conti- 
nuous and monotonous dependence of this value on the parameter 0 

It follows that the problem (3.1) can be solved if there exist two values 
e1 and e2 of the parameter e for which the condition 

max_ 11~’ (T, 0,) I< H< max, 1~’ (.t, 0,) I 

is fulfilled. 

In that case the approximate determination of e* can be, for instance, 
reduced, first to the division of the segment [el,e,] and then to the solu- 
tion of the problem of Section 1 for the values of 0 which are found. 

P r o b 1 e m 3.2. Often the control possibilities of the system are 
limited. This means that the motor which develops a certain force, can work 
only during a certian length of $lme. Therefore, It Is Interesti 

7 
to deter- 

mine the domain in which the initial conditions of the system (1.1 should 
lie so that, from any of these points, an optimum control u"(t) could be 
found such that It brings, in the time T , the system to the origin of the 
coordinates, and gives a minimum of (1.2) with the condition that the motor 
develops a force 1 ul <H during the time p(A) = 1 /e< T. This problem 
reduces to the problem: find the domain of the possible values of the vector 
x0 for which n 

mini maxA 
s1 1 

: lihi (t) dt > +s (3.1) 

with the condition a i 7.1 

ci = - zio, i l,ci=l, t+)=+ h(t) = F(- t)R 

i-1 
Let us get an estimate of the sought for domain. Let US denote the left- 

hand side of (3.1) by C(x) . We shall find the value of G(x) for thepoints 
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X (1) (a-‘, 0, . . . , O), x C2) (0, a-‘, . . . ) O), . . . ) x@)(O, . . . , a-‘) (a > 0) 

We shall denote 

G (Xi) 

The hyperplanes 

corresponding to the 
the domain 1 

= Gi (i = 1, . . . , n), d = min {C$ 

sl 'i!dxl (j=l,. n) * -, (3.2) 

points XJ represent a n-dimensional paralleleplped in 

fi (a2 -Zli2)= 0 (3.3) 
i=l 

The maximum distance of the points of this parallelepiped to the origin 
of the coordinated is obviously 

p=cl/n (3.4) 

The distance from the hyperplanes (3.2) to the origin of the coordinates 
of the space I Is determined by the quantity 

1 
R .= 

Here the symbol llxlla represents the modulus of the vector x . Let the 
point x satisfy the condition 

1 
II 2 112 d - 

al/L 
(3.6) 

We shall prove that for the .z satisfying the inequality (3.6), 

G (r) > d 

Let s be any arbitrary point, satisfying the Inequality (3.6). On the 
basis of (3.6), the corresponding vector 1 will Intersect some face of the 
paralleleplped (3.3). Therefore this vector can be represented In the form 
1 = '111' where n > 1, and the vector 1' 
piped (3.3). Therefore 11 

ends on the edge of the parallele- 

n 

G (x) = q 5 j -j l(hi (z) 1 dz > s 1 2 
A i=l A i=l 

I;& (?I ( d% > d 

The number d can be modified by the choice of the number a. Let us 
consider the number Ac . The new value of the quantities C, will then be 
Xc, and the new value of d Is Ad . 

Assuming a - 1, Xd = l/x and taking (3.6) Into consideration, we get 
the sought estimate 

Ud 
11 z j;2 d :- 

l/n 

(3.7) 

4. Let us consider the following illustrative examples. 

Example 4.1. Let the motion of the control system be described 
by the differential equations 

XI' = x2, x2' = -9 + I%, 2.3 ._ - ll (4.1) 

Let us determine the control u(t) which brings the system (4.1) In the 
time 0 Q t < T to Its equilibrium position (zl == rz = x3 = 0) In a manner 
such that the functional (1.2) has a minimum value. We shall solve the prob- 
lem for the following numerical values: 

cl': 14 *IO-', b = 3.10-c, T z 5360, 0 _- 1/,3( 

The Initial position of the system (4.1) Is glven by 

XI0 = 37.10-3, xzo _ 0, Lrao := 0 (4.2) 

The fundamental solution matrix of the homogeneous system (4.1) has the 
form 
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cos nt u-1 sin at b (i - cos at) 
F(t) = '--usinat cos at ab sinot (4.3) 

0 0 I 
Here a = J&i= 1.17.10-3; b = p / a = 2 -19. 

have the form 
The function hi (T) (i = 1, 2, 3) 

ht (2) = b (1 - cos cc), h, (z) = - ab sin ax, hs(z) = 2 (44 

The numbers oi are given by 

ci = - 37*10-a, cz = 0, cg = 0 (4.5) 

In agreement with Section 1 of the present paper, the sought control 
u"(t) la given by the solution of the problem 

miq maxA 
s 

1 lib (1 - cos az) - lpab sin az + IS 1 dt = y (4.6) 
A 

with the condition 

l,c, $ l,c, + z3cs = 1. mes A = 134 

The solution of the problem (4.6) calculated on a digital computer 
<<YpaJr-2>> (Ural- 2) by the method of steepest descent was in agreement with 
the result of the Section 2 of the present paper. The following results 
were obtained: 

7 = 7930, 1,’ = -27, 1,O = 1.03, 

The system of intervals ho was determined by 

W,341, f2646, 27133, 15326, 53601 

Thus, the optimum control P(T) found on the basis of 

l,O = 59 

(1.4) Is defined by 

U"(T) = 0.126+10-s sign cos ~1: for z an A", ZPfz) = 0 far z outslded' (4.7) 

a graphical representation of the optimum control (4.7) Is shown on Flg.4. 

Let us note aIso that we could consider 
by this method, the problem of the plane 

#cesor motion correction of a material point on 
a near-circular orbit in an equatorial 
plane [3), If the problem Is considered 
In Its linear approximation. For an un- 

ZYr bounded increase In 8 , the solution of 
Ifi II 11 ra the problem Is similar to the impulsive 

4 
* f: :I control analogous to that considered in 
I t, 
Iu' 

I I 0 
II c33. It must be mentioned however, that 

I I 
II II 

P/Z&~l6~ 

~ 

unlike in [3], the problem has been con- 
sldered only In Its linear approxlmatlon. 

I) 

R~~.l~J 
:t Let It now be 
I: ’ 277 

req%ei rtiopAnZ d*k functiond (1.2) 

7-a 
a value of 0 s&h that the optimum con- 

:: trol of Example (4.1) satisfies the com- 
plementary condition 

ntax, J I( (T)/ == 5*10- (4.6) 

Fig. 4 In agreement with Section 3 of the pre- 
sent paper, the problem (4.6) was solved 
for the following values of the parame- 

ter e : e = 403, 348, 335. lhus the followlng values were found for the 
numbers I/v: 

i jr =-_ (1."3.10-5, 4.87.10-5, 5.05 .io-6 
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The value of the parameter e , for which the condition (4.8) was satls- 
fled, was found to be 

8* =338. 

The optimum control in that case Is determined by the expressions 

uo(z) = 5dO+ signcosaz toor Mona', s'(r) = 0 for T outside A’ (4.9) 

thus the system of Intervals A0 Is determined as 

[O, 641, 12595, 27641, [ 5275, 53601 

The graph of the control function (4.9) which was found Is shown by a 
dotted line on Flg.4. 
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